Integration
- ∫ xn dx = (xn +1⁄ n+1) + c
- ∫ ex dx = ex + c
- ∫ 1 ⁄ x dx = ln |x| + c
- ∫ cos x dx = sin x + c
- ∫ sin x dx = - cos x + c
- ∫ sec2 x dx = tan x + c
- ∫ cosec x cot x dx = - cosec x + c
- ∫ cosec2 x dx = - cot x + c
- ∫ sec x tan x dx = sec x + c
Equations
- Integration by parts
∫ u (dv ⁄ dx) dx = uv - ∫ v (du ⁄ dx) dx - Integrating f (ax + b)
∫ f '(ax + b) dx = 1⁄ a f(ax + b) + c